COMMANDS FOR WORKING WITH SERVICES

1- Managing services with systemd

1.1- Starting, stopping, restarting, enabling, disabling and checking status of services with systemcil

a) On Linux, systemctl is a utility that may be used to manage services running on your system. This command
should be run as a root user.The following options are available with systemctl:
+ start — Starting a service.
stop — Stopping a service.
restart — Restarting a service.
status — Displaying a service status (is stopped or started).
enable — Enabling a service
disable — Disabling a service

b) Synopsis: systemctl option service_name

c) Examples:
+ sudo systemctl start ssh — This command starts the ssh service
+ sudo systemctl stop apache2 — This command stops the apache service
+ sudo systemctl restart cups — This command restarts the cups service
sudo systemctl enable mysql — This command enables the mysql service
sudo systemctl disable ssh — This command disables the ssh service
systemctl status cups — This command displays basic information about the cups service status
sudo systemctl status cups — This command displays extended information about the cups service

1.2- Listing services and their status

a) systemctl list-units --type service — This command shows the list of each service on your system and its
current status. Command sudo is not required.

b) systemctl list-units --type service --state=running — This command shows the list of each service loaded,
active and running on your system and its current status. Command sudo is not required.

c) systemctl list-unit-files --state=enabled — This command shows the list of enabled services. Command
sudo is not required.

d) systemctl list-unit-files --state=disabled — This command shows the list of disabled services. Command
sudo is not required.

e) systemctl is-enable service_name — This command shows if a particular service is enabled or not.
Command sudo is not required. Example: systemctl is-enabled apache2 shows if apache2 is disabled or not.

f) sudo netstat -atupn — This command shows network services running in your system just now. This command

should be run as a root user. If netstat is not installed on your system, you should install a software package
called net-tools.

1.3- Checking dependencies

a) Sometimes services can include dependencies to other services. A service dependency means that one
service needs another service to be running (or started first) in order to work correctly.

b) In Debian Linux, if a services depends on another services, systemd tries to start the required service. If the
required service fails to start, the dependent service will not start.

c) systemctl list-dependencies service_name — This command shows dependencies of service_name.

d) systemctl list-dependencies --reverse service_name — This command shows the list of services that depend
of service_name.

e) Example 1: systemctl list-dependencies cups — It shows dependencies of cups.

f) Example 2: systemctl list-dependencies --reverse cups — It shows services that depend of cups.

2- Example of how to add a new service from the scratch

a) Download the source code of a server called echod.c from the following URL:
https://www.collados.org/asix1/sm1/tasks/sm1act10/echod.c

b) Compile echod.c. Run the command: gcc -O echod.c -0 echod. A new program echod will be created. This
program is a server.

c) With root privileges, copy echod into /usr/sbin.

d) A systemd service file is a configuration file that provides information to the system about how to manage a
specific service. These files are typically stored in the /etc/systemd/system directory and have a .service
extension. Download a systemd service file called myservice.service from the following URL:

https://www.collados.org/asix1/sm1/tasks/sm1act10/myservice.service

e) Change the filename of myservice.service to echod.service. Afterwards, edit the contents of echod.service
and make the following changes:

* Line 1 — # Contents of /etc/systemd/system/echod.service

» Line 3 — Description=Echod Service

* Line 9 — ExecStart=/usr/sbin/echod

f) Copy, with root privileges, echod.service into /etc/systemd/system.

g) Run the following commands with root privileges to enable the service:
systemctl daemon-reload
systemctl enable echod.service

h) Start the new service running with root privileges:
systemctl start echod.service

i) Check the status of the new service runnig:
systemctl status echod.service

j) Restart the new service running with root privileges:
systemctl restart echod.service
and check its status and its PID.

k) Stop the new service running with root privileges:

systemctl stop echod.service
and check its status

3- Example of how to run a programs, command or bash script during the boot process

a) Create with the help of nano the following bash script:

#!/bin/bash

date > /etc/lastStUpdSw
apt—get update

exit O

Save the script with the following name: StUpdSw.sh. This is the script that you want to run during the boot
process.

About this script:
» Itis not a service. When the last line is executed, the script ends.
+ It updates the list of packages available for installation on your system.

b) Copy this file to /usr/sbin with permissions 755.

c) Create a file called StUpdSw.service in /etc/systemd/system with the following content:

[Unit]
Description=Update List of Sofware Packages during Boot process

[Service]
ExecStart=/bin/bash /usr/sbin/StUpdSw.sh

[Install]
WantedBy=multi-user.target

d) Run the following commands with root privileges:
systemctl daemon-reload
systemctl enable StUpdSw.service

e) Check the status of the new service runnig:
systemctl status StUpdSw.service

f) Reboot the system. Check that:
The contents of /etc/lastStUpdSw shows last time an update of the software package list was made
during the boot process.
* Run sudo journalctl -u StUpdSw.service | grep "Started StUpdSw.service" | tail -n 1 and check that
during the last boot process the script was started and an update of the software package list was made.
» Check that date and time shown by /etc/lastStUpdSw and journalctl match.

